
Abstract. Based on a general discussion of orthogonal-
ization e�ects, two new one-electron orthogonalization
corrections are derived to improve existing semiempir-
ical models at the neglect of diatomic di�erential overlap
level. The ®rst one accounts for valence-shell orthogo-
nalization e�ects on the resonance integrals, while the
second one includes the dominant repulsive core±valence
interactions through an e�ective core potential. The
corrections for the resonance integrals consist of three-
center terms which incorporate stereodiscriminating
properties into the two-center matrix elements of the
core Hamiltonian. They provide a better description of
conformational properties, which is rationalized quali-
tatively and demonstrated through numerical calcula-
tions on small model systems. The proposed corrections
are part of a new general-purpose semiempirical method
which will be described elsewhere.

Key words: Semiempirical methods ± Orthogonaliza-
tion ± E�ective core potentials

1 Introduction

Semiempirical methods are widely used in theoretical
studies of molecular structure and reactivity [1±4].
Neglect of diatomic di�erential overlap (NDDO) is the
most accurate of the three traditional integral approx-
imations complete neglect of di�erential overlap
(CNDO), intermediate neglect of di�erential overlap
(INDO), and NDDO [5, 6], and consequently the
NDDO-based methods modi®ed neglect of di�erential
overlap (MNDO) [7], Austin model 1 (AM1) [8], and

parameterized model 3 (PM3) [9] have generally replaced
older methods in practical calculations.

A vast body of literature documents the performance
of these and other semiempirical methods [1±4]. It has
become standard to judge their accuracies primarily
from their ability to reproduce the heats of formation for
large sets of reference molecules. Considering the di�-
culties of ab initio methods to predict accurate atom-
ization energies, the errors in semiempirical heats of
formation are often surprisingly small [10]; however,
these errors tend to be unsystematic so that relative en-
ergies are often calculated less reliably by semiempirical
methods, and signi®cant problems are indeed encoun-
tered in several chemically important areas, for example,
with regard to energy di�erences between conforma-
tional and constitutional isomers, intermolecular inter-
action energies, or reaction barriers [11±15].

A prominent example is the rotational barrier in
ethane, which is underestimated by more than a factor of
2 in MNDO, AM1, and PM3, whereas even minimal
basis set ab initio self-consistent-®eld (SCF) calculations
reproduce the experimental value well. Although di�er-
ent views have been expressed on the origin of such
rotational barriers [16±22], it is generally accepted that
proper orthogonality of the orbitals is essential to
account for the dominant contributions to the barriers
that arise from Pauli exchange repulsion. Due to the
approximation of zero di�erential overlap (ZDO), these
orthogonalization e�ects are neglected in the established
semiempirical methods, which can therefore not be ex-
pected to treat conformational properties well.

To overcome such qualitative shortcomings, it seems
necessary to improve the underlying semiempirical
model by introducing orthogonalization corrections. In
previous work, orthogonalization corrections have al-
ready been proposed at all three levels of integral ap-
proximation (CNDO ± S2 [23], SINDO [24], SINDO1
[25, 26], and NDDO [27]). The present development goes
beyond these previous attempts, which include correc-
tions only for the one-center core Hamiltonian matrix
elements.

Based on a general discussion of orthogonalization
e�ects (Sect. 2), we derive two new orthogonalization
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corrections which are suitable for any semiempirical
model. The ®rst one applies to the two-center core
Hamiltonian matrix elements, commonly known as
resonance integrals (Sect. 3.1). This correction includes
three-center terms so that these matrix elements become
dependent on the molecular environment, similar to the
properly orthogonalized ab initio integrals (Sect. 3.2).
As will be demonstrated for several model systems,
the three-center terms incorporate stereodiscriminating
properties into the semiempirical description of a
chemical bond (Sect. 3).

The second correction addresses the orthogonaliza-
tion e�ects between core and valence electrons. Ab initio
e�ective core potentials (ECPs) account both for the
orthogonalization e�ects and for the exchange and po-
larization interactions between core and valence elec-
trons, but the former are known to be dominant [28, 29].
In a semiempirical context, it seems justi®ed to focus on
these dominant terms. A corresponding semiempirical
ECP has previously been suggested [30] and incorpo-
rated at the CNDO [31] and INDO [25] levels. We derive
an alternative ECP to account for core±valence orthog-
onalization (Sect. 4.1) which is conceptually similar, but
contains an additional term and o�ers more ¯exibility
for subsequent parametrization (Sect. 4.2). Compared
with the use of scaled ab initio ECPs in NDDO [27] our
new approach is less expensive and more versatile.

In semiempirical quantum chemistry, the practical
value of a new model can only be judged after its im-
plementation and parameterization. The proposed or-
thogonalization corrections are central features of a new
semiempirical NDDO method called orthogonalization
model 2 (OM2), which has been implemented and pa-
rameterized for the elements H, C, N, and O [32] and
which will be published in detail elsewhere, with a com-
prehensive and critical examination of its performance.

2 Theoretical background

2.1 General considerations

Ab initio SCF methods solve the Roothaan±Hall pseu-
doeigenvalue problem

FC � SCE ; �1�
where F, C, and S denote the Fock, eigenvector, and
overlap matrices, respectively, and E is the diagonal
matrix of orbital energies. Orthogonalization of the basis
leads to a standard eigenvalue problem

kFkC � kCE ; �2�
where the superscript k denotes a quantity expressed in
an orthogonalized basis. The corresponding transfor-
mation can be achieved through a symmetric LoÈ wdin
orthogonalization [33, 34]

kF � Sÿ1=2FSÿ1=2 �3�
kC � S1=2C �4�
kS � 1 : �5�

By contrast, semiempirical methods solve a secular
equation,

NDDOFNDDOC � NDDOCE ; �6�
where the transformation F! kF is not explicitly
performed. This suggests that the semiempirical Fock
matrix implicitly refers to an orthogonal basis:

NDDOF � kF : �7�
The neglect of all three-center and four-center two-
electron integrals in the NDDO approximation [5, 6] is
consistent with this interpretation because these integrals
are vanishingly small only in an orthogonalized basis
[35±37].

The Fock matrix contains both one-electron (H) and
two-electron (G) terms, which can be handled separately
during LoÈ wdin orthogonalization:

kF � kH� kG �8�
kH � Sÿ1=2HSÿ1=2 �9�
kG � Sÿ1=2GSÿ1=2 : �10�
To account for the orthogonalization e�ects arising
from these transformations, di�erent strategies may be
followed in a semiempirical context. The direct use
of Eq. (10) is not feasible since it requires the prior
calculation of all two-electron integrals and would thus
sacri®ce the computational e�ciency of the NDDO
approach. On the other hand, the exact orthogonaliza-
tion of the one-electron part according to Eq. (9) would
be feasible computationally; however, using Eq. (9)
without Eq. (10) introduces an imbalance between the
one- and two-electron parts of the Fock matrix and is
therefore problematic. In the literature, several variants
of this approach have been studied, where di�erent parts
of the Fock matrix are subjected to the exact LoÈ wdin
transformation while the ZDO approximation is applied
to the remainder [15, 38±41]. To our knowledge, none of
these attempts have been successfully incorporated into
a general-purpose semiempirical method. Therefore,
we shall adopt the alternative strategy of representing
the dominant orthogonalization corrections by suitable
parametric functions. These corrections can then be
adjusted during the parameterization process, as in
previous approaches at the CNDO, INDO, and NDDO
levels [23±27].

2.2 Orthogonalization e�ects on basis orbitals

Symmetric orthogonalization transforms a basis fug of
nonorthogonal atomic orbitals (AO) into a set of
orthogonalized AOs (OAOs)

ku � uSÿ1=2 : �11�
In the special case of a diatomic molecule with two AOs
(l at atom A, k at atom B), the Sÿ1=2 matrix, and hence
also the orthogonal AOs, can be given in analytical
form:
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where Slk is the overlap integral between the AOs. In the
general case, the Sÿ1=2 matrix is not known analytically,
but can be expanded in a Taylor series in terms of the
matrix S0, which contains the o�-diagonal elements of
the overlap matrix and zero diagonal elements,

Sÿ1=2 � �1� S0�ÿ1=2

� 1ÿ 1

2
S0 � 3

8
S02 ÿ 5

16
S03 � 35

128
S04 ÿ . . . : �13�

For the special two-orbital case, one obtains

kl � 1� 3

8
S2

lk �
35

128
S4

lk � . . .

� �
l

ÿ 1

2
Slk � 5

16
S3

lk � . . .

� �
k : �14�

Thus, the convergence depends on the magnitude of the
overlap integral: it is fast for small overlap and slow for
large overlap. The expansion (Eq. 13) fails to converge if
the spectrum of the matrix S0 (its largest eigenvalue) is
larger than 1 [42]. However, there are methods to force
this expansion to converge [43, 44], by writing the
expansion coe�cients in Eq. (13) as functions of the
spectrum of the overlap matrix, for example, by using
suitable Legendre coe�cients [44]. Normally, the di�er-
ences between the ®xed and the spectrum-dependent
coe�cients are very small.

As can be seen from Eqs. (12) and (14), orthogonal-
ization implies delocalization: the OAOs have so-called
``orthogonalization tails'', i.e. contributions from the
AOs at all other centers which are nonorthogonal to the
original AO. This mixing depends on the geometry of
the molecular environment as re¯ected in the overlap
matrix. Since overlap integrals decrease exponentially
with increasing distance, orthogonalization e�ects are of
short range.

In addition, orthogonalization also leads to a con-
traction. Equations (12) and (14) show that the coe�-
cient of the original AO in its OAO is larger than 1. The
resulting increase in density close to the center of the
original AO is compensated by a reduction in density in
and around the nodal regions of the OAO. The or-
thogonalization accounts for the Pauli repulsion of the
electrons at other centers [35] and prevents penetration
into these regions, thus e�ectively reducing the volume
for an electron in the OAO and increasing its kinetic
energy. Therefore, the energy of an OAO is higher than
that of the corresponding AO (Fig. 1, Hll ! kHll).

In a full-overlap treatment based on Eq. (1), the in-
teraction between two nonorthogonal AOs leads to an
unsymmetric split of the energy levels to yield the or-
thogonal molecular orbitals (MOs), such that the anti-
bonding MO is destabilized more than the bonding MO

is stabilized. The same MO energy levels are obtained by
a symmetric split of the OAO energy levels, which have
already been raised by the orthogonalization. Standard
semiempirical ZDO methods, on the other hand, do not
account for the destabilization due to orthogonalization
and therefore yield a symmetric splitting relative to the
original AO level (Fig. 1). This results in some of the
most severe de®ciencies of ZDO-based semiempirical
methods [32]:

1. The gaps between bonding and antibonding MOs,
as well as the corresponding excitation energies, are
signi®cantly underestimated.

2. The correct pairing properties for the electronic
states of conjugated hydrocarbons are not reproduced
[15].

3. Barriers to internal rotation as in ethane are
severely underestimated, with implications for other
conformational properties (for a detailed discussion see
Ref. [32]).

4. The closed-shell repulsion of four-electron two-
orbital interactions is not recovered, causing for exam-
ple, the incorrect prediction of a stable He2 dimer and a
stable H2 triplet state in CNDO [11], a lack of destabi-
lization in antiaromatic systems (Sect. 3.3), and quali-
tatively wrong intermolecular interaction potentials [12]
and transition structures [13, 14].

2.3 Orthogonalization e�ects on integrals
and matrix elements

The ZDO approximation leads to a dramatic reduction
in the number of two-electron integrals that are consid-
ered, since it neglects all three- and four-center two-
electron integrals. It has been justi®ed by theoretical
considerations [45, 46] and explicit calculations [35±37]
which have shown that three- and four-center two-
electron integrals are indeed very small in an OAO basis.
Integrals of the type hlAmAjkBrCi are di�erent and have
therefore been studied speci®cally [43, 47, 48]. A recent
overview can be found in Ref. [49].

Fig. 1. Molecular orbital (MO) scheme for atomic orbitals (AOs)
and orthogonalized AOs (OAOs). The energy levels are given by the
one-electron matrix elements: Hll and kHll denote the AO and
OAO, respectively, while Hii and H �ii refer to the bonding and
antibonding MOs, respectively. Without accounting for orthogo-
nalization zero di�erential overlap (ZDO) methods predict a
symmetric splitting of the MOs relative to the original AOs,
resulting in too low antibonding MOs H��ZDO�

ii
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Di�erent approaches are conceivable for calculating
the surviving NDDO two-electron integrals in an OAO
basis. An exact calculation according to Eq. (10) would
defeat the purpose of the NDDO approximation because
it requires the prior computation of all two-electron in-
tegrals, including the three- and four-center integrals. As
a remedy, these latter integrals could be expanded in
terms of two-center two-electron AO integrals according
to the so-called ``Ruedenberg approximation'' [37, 47,
50]; however, this scheme is only approximate, compu-
tationally expensive, and therefore not recommendable
from our experience. Another approach applies the ex-
pansion (Eq. 13) to Eq. (10): expanding only to O�S�
yields integrals that are identical in the AO and OAO
bases, while expanding to O�S2� provides correction
terms containing two-center AAC and BAC integrals
[47]. We have reexamined these issues [32] and con®rmed
previous ®ndings that the exact orthogonalization cor-
rections from Eq. (10) are relatively small for typical
NDDO-type two-electron integrals, especially when
compared with those for the one-electron integrals. As in
previous semiempirical methods, we have therefore de-
cided to neglect these two-electron corrections, with the
understanding that their average e�ect may partly be
absorbed through the semiempirical parameterization of
the one-electron corrections (see later). Hence, we rep-
resent the NDDO two-electron integrals in an OAO
basis by

k�lAmBjkCrD� � �lAmBjkCrD�dABdCD : �15�
The orthogonalization e�ects for the one-electron inte-
grals are most transparent in the homonuclear two-
orbital case (l and k are AOs of the same type at two
centers A and B, respectively). Employing Eq. (9) the
two relevant core Hamiltonian matrix elements in the
orthogonal basis are given by

kHll � Hll ÿ SlkMlk

1ÿ S2
lk

�16�

kHlk � Mlk

1ÿ S2
lk

; �17�

where we have introduced the so-called Mulliken
function, Mlk, which vanishes identically if the Mulliken
approximation (Eq. 19) is applied,

Mlk � Hlk ÿ Slk

2
�Hll � Hkk� �18�

lk �Mulliken Slk

2
�l2 � k2� : �19�

The one-electron Hamiltonian consists of a di�erential
operator for the kinetic energy (T̂ ) and a multiplicative
operator for the potential energy (V̂ ). The Mulliken
approximation (Eq. 19) can be applied only to the latter
yielding

kVll �Mulliken Vll �20�
kHll � kTll � kVll � kTll � Vll �21�
kVlk �Mulliken

0 �22�
kHlk � kTlk � kVlk � kTlk : �23�

Obviously, orthogonalization a�ects the diagonal kHll
one-center terms much less than the o�-diagonal kHlk
two-center terms where the potential-energy contribu-
tion vanishes. These qualitative conclusions have been
con®rmed by numerical computation of the exact
orthogonalization corrections [51].

The matrix elements kHlk and Hlk di�er not only in
magnitude, but also in their distance dependence. Since
both kinetic-energy and potential-energy integrals over
AOs generally decrease with increasing distance in a
manner similar to the corresponding overlap integrals
(e.g. Ref. [52]), it is reasonable to assume the following
proportionality in the AO basis:

Hlk / Slk : �24�
In the limit of large internuclear distances, RAB, the
relation kHlk / Slk should also hold (see Eqs. 17, 18).
For intermediate distances, the ®rst-order correction
Hlk ! Mlk leads to new minima or maxima, because
Mlk � 0 for both RAB � 0 and RAB � 1. For short
distances, the higher-order corrections from �1ÿ S2

lk�ÿ1
become important and cause more pronounced extrema
that are shifted towards shorter distances. Hence, in
general,

kHlk 6/ Slk : �25�
Graphical presentations of kHlk, Mlk, Hlk, and Slk can
be found in Refs. [11, 41].

The existing semiempirical methods approximate the
two-center one-electron matrix element kHlk by an em-
pirical resonance integral blk, which is a local function
of the type

kHlk � blk � f �lA; kB;RAB� : �26�
The established MNDO-type methods set the resonance
integrals proportional to the overlap integrals, although
this is not justi®ed in an OAO basis (see earlier).
Functional expressions consistent with Eq. (25) have
been suggested, either as theoretically derived formulas
such as Eq. (17) [24, 53], or as purely empirical
functions tailored to mimic kHlk in a local AAB system
[27],

blk � 1
2 �bA

l � bB
k �

���������
RAB

p
exp �ÿ�aAl � aBk �R2

AB� ; �27�
where al and bl are adjustable parameters that are
speci®c for a given AO type, and a suitable phase factor
is implied [27]. Such expressions can e�ectively contain
higher-order orthogonalization corrections.

Generalizing our discussion from diatomic to poly-
atomic molecules, the exact orthogonalization according
to Eq. (9) will produce one-electron matrix elements
kHlk in the OAO basis which have contributions from all
AOs in the molecule and can therefore not be repre-
sented by a purely local function such as the resonance
integral blk, Eq. (26). In order to account for these or-
thogonalization e�ects in polyatomic molecules, correc-
tions with three-center contributions are needed. These
three-center terms emerge naturally when applying the
expansion (Eq. 13) to the matrix elements Hlk. This
approach has been suggested before [11, 41], but in
neither case were the approximations and derivations
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discussed, nor were the suggested terms tested numeri-
cally for their usefulness in practical semiempirical cal-
culations.

3 Orthogonalization corrections
to the resonance integrals

3.1 Derivation

We begin the derivation of possible correction terms by
applying the Sÿ1=2 expansion (Eq. 13) to the orthogo-
nalization of the core Hamiltonian,

kH � Sÿ1=2HSÿ1=2

� 1ÿ 1

2
S0 � 3

8
S02 ÿ . . .

� �
H 1ÿ 1

2
S0 � 3

8
S02 ÿ . . .

� �
� Hÿ 1

2 �S0H�HS0� � 3
8 �S02H�HS02�

� 1
4S
0HS0 �O�S03� : �28�

Only terms up to the second power in S0 have been
included. By proper indexing we now focus on the two-
center matrix elements,

kHlk � Hlk ÿ 1

2

X
q

S0lqHqk � HlqS0qk

� �
� 1

8

X
q

X
r

3S0lqS0qrHrk � 3HlqS0qrS0rk

�
�2S0lqHqrS0rk

�
:

�29�
Expanding the ®rst sum and separating the cases where
q � l and q � k we obtain

kHlk � Hlk ÿ 1

2
SlkHkk ÿ 1

2
HllSlk

ÿ 1

2

X
q6�l;k

SlqHqk � HlqSqk
ÿ �

� 1

8

X
q

X
r

3SlqSqrHrk � 3HlqSqrSrk
ÿ
�2SlqHqrSrk

�
; �30�

where we have used S0ll � 0 and dropped the primes
since S0lk � Slk for l 6� k. The ®rst three local terms
de®ne the Mulliken function, Eq. (18). Using the reverse
relation,

Hlk � Mlk � 1
2 Slk�Hll � Hkk� ; �31�

we rewrite the single sum in Eq. (30),

kHlk � Mlk ÿ 1

2

X
q6�l;k

Slq Mqk � 1

2
Sqk Hqq � Hkk
ÿ �� ��

�Sqk Mlq � 1

2
Slq Hll � Hqq
ÿ �� ��

� 1

8

X
q

X
r

3SlqSqrHrk � 3HlqSqrSrk
ÿ
�2SlqHqrSrk

� �32�

� Mlk ÿ 1

2

X
q6�l;k

SlqMqk �MlqSqk
ÿ �

ÿ 1

4

X
q6�l;k

SlqSqk Hll � Hkk � 2Hqq
ÿ �

� 1

8

X
q

X
r

3SlqSqrHrk � 3HlqSqrSrk
ÿ
�2SlqHqrSrk

�
: �33�

Up to this point, the derivation was exact ± apart from
truncating the power expansion of Sÿ1=2 beyond O�S2�,
Eq. (28). We now wish to ®nd an orthogonalization
correction which approximates the exact di�erence
kHlk ÿ Hlk and is at the same time as simple as possible
and ¯exible enough to ®t into a semiempirical scheme.

The double sum in Eq. (33) contains four-center
contributions of the form SlAqCSqCrDHrDkB . Since the
HrDkB matrix element behaves like the SrDkB overlap in-
tegral in the present context, this four-center contribu-
tion is formally of third order in S. Since the correction
terms should be at most of second order in S, we can
neglect all terms in the double sum which contain two-
center matrix elements of H. Since semiempirical meth-
ods usually employ a minimal valence basis, all AOs at
the same center will be orthogonal, and two-center
contributions in Eq. (33) such as SlAqBSqBrBHrBkB will
vanish. Finally, the terms of the second sum in Eq. (33)
can be combined with the corresponding terms of
the double sum (interchanging indices, if necessary).
Introducing all these simpli®cations leads to

kHlk � Mlk ÿ 1

2

X
q6�l;k

�SlqMqk �MlqSqk�

� 1

8

XC
q

SlqSqk�Hll � Hkk ÿ 2Hqq�

� 1

8

XC
q

3
XB
r6�k

SlqSqrHrk � 3
XA
r6�l

SrqSqkHlr

 

�2
XC
r6�q

SlqSrkHqr

!
: �34�

Note that the last two sums contain only three-center
contributions, which is indicated by appropriate atomic
labels at the summation symbols. In the speci®c case of a
diatomic molecule AAB, this equation thus reduces to

kHAB
lk � Mlk ÿ 1

2

X
q6�l;k

�SlqMqk �MlqSqk� : �35�

The sum can be expanded and reformulated using
SlAmA � 0 and MlAmA � HlAmA . Remembering the expan-
sion character of this approach until O�S2� we write

kHAB
lk � Mlk ÿ 1

2

XA
m 6�l

HlmSmk ÿ 1

2

XB
j6�k

SljHjk � O�S3� �36�

�def blk : �37�
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As emphasized in Eq. (37), we suggest representing this
local matrix element by an empirical resonance integral,
blk, for example, of the form of Eq. (27) [27]. Concep-
tually, this resonance integral includes per de®nitionem
all local orthogonalization corrections (of second and
higher order). Inserting blk, Eq. (37), into Eq. (34) we
can limit the summations to AOs which are centered at
neither A nor B,

kHlk � blk ÿ
1

2

XC
q

�SlqMqk �MlqSqk�

� 1

8

XC
q

SlqSqk�Hll � Hkk ÿ 2Hqq�

� 1

8

XC
q

3
XB
r6�k

SlqSqrHrk � 3
XA
r6�l

SrqSqkHlr

 

�2
XC
r 6�q

SlqSrkHqr

!
: �38�

At this point, we have achieved a separation of kHlk into
a two-center resonance integral (which may e�ectively
contain local higher-order corrections) and three-center
second-order orthogonalization corrections. We now
rearrange the latter terms,

kHlk � blk ÿ
1

2

XC
q

Slq Mqk ÿ 1

2

XB
r6�k

SqrHrk ÿ 1

2

XC
r6�q

SrkHqr

"(

ÿ 1

4

XB
r6�k

SqrHrk � 1

4

XC
r6�q

SrkHqr

#

� Sqk Mlq ÿ 1

2

XA
r6�l

SrqHlr ÿ 1

2

XC
r6�q

SlrHqr

"

ÿ 1

4

XA
r6�l

SrqHlr � 1

4

XC
r 6�q

SlrHqr

#)

� 1

8

XC
q

SlqSqk�Hll � Hkk ÿ 2Hqq� : �39�

The two expressions in square brackets represent local
two-center quantities: the ®rst one for BAC, the second
one for AAC. The last two terms in each of these
expressions tend to cancel each other and may therefore
be neglected. The remaining terms can then be identi®ed
with the corresponding resonance integrals bqk and blq,
see Eqs. (36) and (37). Introducing these simpli®cations
into Eq. (39) yields

kHlk � blk ÿ
1

2

XC
q

�Slqbqk � blqSqk�

� 1

8

XC
q

SlqSqk�Hll � Hkk ÿ 2Hqq� : �40�

This is our ®nal formula for the two-center one-electron
matrix elements. It contains a relatively simple expres-
sion for the three-center second-order orthogonalization
corrections which may also implicitly account for some
higher-order corrections if these are included in the
empirical two-center resonance integrals.

For the sake of completeness, we relate the present
development to previous work [11, 47]. The former de-
rivation is terminated at Eq. (30) [47], while the latter
arrives at an expression like Eq. (34), but without the
last sum of terms [11]. To our knowledge, neither of
these corrections have ever been used in actual MO
calculations.

3.2 Discussion and qualitative interpretation

The proposed orthogonalization corrections to the
resonance integral between AOs l at A and k at B act
like a pseudopotential which can be decomposed into
contributions Vlk;C�ORT� from the other atoms, C,

kHlk � blk �
X
C

Vlk;C�ORT� �41�

Vlk;C�ORT� � ÿ 1

2

X
q�C

�Slqbqk � blqSqk�

� 1

8

X
q�C

SlqSqk�Hll � Hkk ÿ 2Hqq� : �42�

As in the case of the properly orthogonalized ab initio
integrals, the kHlk matrix elements depend on the type
and location of all other AOs, q, which are not already
orthogonal to the original AOs l and k. In our suggested
formalism, the three-center pseudopotential terms intro-
duce a sensitivity towards the molecular environment
into the core Hamiltonian, and they will therefore
critically a�ect the relative energies of conformers and
stereoisomers.

For a qualitative discussion of this pseudopotential
we consider a triatomic model molecule ACB with one
AO per atom, such as 1s or 2pp (Fig. 2), as introduced by
de Bruijn [11, 54]. In this case, the AOs can simply be
denoted by the atomic label (e.g. A instead of l).

3.2.1 Case 1: strong interactions

The matrix element kHAC describes the interaction along
the chemical bond AAC. It is given by

Fig. 2. Two-center matrix elements of the core Hamiltonian in a
three-center system; case 1 (left) and case 2 (right). Each atom
carries one single orbital designated by A, B, and C, respectively
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kHAC � bAC � VAC;B�ORT�
� bAC ÿ 1

2 �SABbBC � bABSBC�
� 1

8 SABSBC�HAA � HCC ÿ 2HBB� : �43�
The two terms of the pseudopotential each contain one
small factor involving the nonbonded atoms A and B,
either SAB or bAB. The pseudopotential will thus be a
small correction to the leading resonance integral bAC,

jbACj � jVAC;B�ORT�j : �44�
The ®rst term of the pseudopotential will be repulsive,
because overlap and resonance integrals normally have
opposite signs. The second term vanishes in the homo-
nuclear case and will gain importance with increasing
bond polarity; it may be positive or negative. As long as
the bonds are not too polar, the ®rst term is expected to
be dominant. The energetic contribution of the pseudo-
potential is governed by its product with the relevant
density matrix element (PAC). Since this is usually
positive for case 1 (chemical bond AAC), the overall
orthogonalization correction should be repulsive. The
closer atoms A and B approach each other, the larger the
repulsion.

3.2.2 Case 2: weak or second-neighbor interactions

The matrix element kHAB describes the interaction
between the nonbonded atoms A and B. It is given by

kHAB � bAB � VAB;C�ORT�
� bAB ÿ 1

2 �SACbCB � bACSCB�
� 1

8 SACSCB�HAA � HBB ÿ 2HCC� : �45�
Here, each of the two pseudopotential terms contains
two relatively large factors, since the overlap and
resonance integrals both refer to the two chemical
bonds. In addition, the resonance integral bAB is rather
small due to the larger nonbonded distance between A
and B, so that we may expect it to be of similar
magnitude as the pseudopotential,

jbABj � jVAB;C�ORT�j : �46�
Again, the corrections to the resonance integral will
usually be repulsive. The pseudopotential may dominate
and so kHAB may even become positive. In contrast to
case 1, the density matrix elements (PAB) for second-
neighbor interactions are usually small and mostly
negative, which leads to attractive pseudopotential
contributions to the total energy. Neglecting these
contributions, the established ZDO methods will tend
to overestimate the repulsion of second-neighbor inter-
actions. As long as the number of (too attractive) one-
center and direct-neighbor interactions on the one side
and (too repulsive) second-neighbor interactions on the
other side are in balance, the errors may largely cancel
each other; however, when one of them dominates, this
balance is lost. For example, the latter dominate in
highly branched systems whose stability is underesti-
mated (e.g. neopentane, too unstable by 15.7 kcal/mol in
MNDO). In symmetrical clusters [54] one can no longer
di�erentiate between ``bonded'' and ``nonbonded'' in-

teractions, and neglect of the orthogonalization correc-
tions may then lead to an underestimation of the steric
strain in clusters and small rings (e.g. cubane, too stable
by 49.6 kcal/mol in MNDO).

It should be emphasized that the examples discussed
in this section are not artefacts of the speci®c pseudo-
potential used here. The same e�ects, such as a positive
kHAB, Eq. (45), are also found at the ab initio level in the
corresponding LoÈ wdin orthogonalized core Hamiltoni-
an matrix elements. This has, for example, been shown
by e�ective valence Hamiltonian calculations [55].

3.3 Quantitative analysis of the three-center terms

The total energetic contribution of the three-center
pseudopotential terms is given by

EORT �
X

l

X
k

Plk

X
C

Vlk;C�ORT� : �47�

To gain further insight, it is of interest to evaluate this
quantity and to study its speci®c in¯uence on relative
energies, for example, in the case of conformers or
constitutional isomers. For this purpose, we have chosen
two very small model systems (Hÿ3 and H4) where an
energy partitioning is still transparent enough to allow
meaningful conclusions to be drawn. Since it is well
known that the results from energy partitioning can
depend critically on the geometry, even in a qualitative
sense, we have kept all geometrical parameters ®xed
except for the one being studied (angle in Hÿ3 and
dihedral angle in H4). At a given geometry and for a
given theoretical approach, the density matrix elements
entering Eq. (47) have been determined from an SCF
calculation. They vary only very slightly between
di�erent calculations (e.g. with or without pseudopoten-
tial terms) so that changes in EORT are generally caused
by di�erent pseudopotential terms (and not by di�erent
density matrices).

In the OM2 implementation [32] the two terms in
Eq. (42) are weighted by prefactors (GAB

1 ;GAB
2 ), which

are calculated as arithmetic means of atomic parameters.
These in turn are adjusted in the semiempirical param-
eterization,

GAB
1 � 1

2 �GA
1 � GB

1 � �48�
GAB

2 � 1
2 �GA

2 � GB
2 � : �49�

The pseudopotential thus takes the following form,

Vlk;C�ORT� � ÿ 1

2
GAB

1

X
q�C

�Slqbqk � blqSqk�

� 1

8
GAB

2

X
q�C

SlqSqk�Hll � Hkk ÿ 2Hqq� :

�50�
The optimized OM2 prefactors for hydrogen are
GH

1 � 0:652716 and GH
2 � 0:908437. For the sake of

comparison, results are also reported with full orthog-
onalization corrections (GH

1 � GH
2 � 1, ``OM2*'') and
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without three-center orthogonalization corrections
(GH

1 � GH
2 � 0, ``OM2**''). For the chosen model sys-

tems, the second term in Eq. (50) vanishes.

3.3.1 Hÿ3 : bent versus linear

Qualitative MO schemes show that closed-shell repul-
sions are smaller in aromatic than in nonaromatic
systems [56]. One may expect that they are largest in
antiaromatic systems. The smallest antiaromatic system,
the cyclic Hÿ3 ion (D3h), has one bonding MO and two
singly-occupied degenerate antibonding MOs. This con-
®guration is unstable, and the system alleviates electron-
ic strain by adopting the linear con®guration instead in
which the MOs are nondegenerate and the HOMO is
nonbonding, so that the system is nonaromatic.

To quantify how far the new correction terms re-
produce the closed-shell repulsions, the energy of the Hÿ3
ion was determined by closed-shell SCF calculations at
four di�erent bond angles, with ®xed HAH bond lengths
of 1.1 AÊ (Table 1). The minimum angle was chosen to be
90�, since a closed-shell treatment would be inappro-
priate at 60� (D3h symmetry, degenerate MOs). Ab initio
calculations at the restricted Hartree±Fork (RHF)/
6-31G** level are used as the reference. They yield an
energy di�erence of 66.6 kcal/mol between the favored
linear and the bent 90� con®guration. The corresponding
MNDO value of 33.6 kcal/mol is much smaller, which is
not surprising since MNDO does not account for the
orthogonalization e�ects explicitly. Consistent with this
interpretation, OM2 yields a similar value of 36.2 kcal/

mol when neglecting the three-center pseudopotential
contributions (OM2**), which increases signi®cantly to
58.5 kcal/mol when these contributions are fully in-
cluded (OM2*). Hence, in the OM2 framework, almost
half of the energy increase is caused by closed-shell
repulsion.

The orthogonalization energies, Eq. (47), for OM2,
OM2*, and OM2** (zero by de®nition in the latter case)
are listed in Table 2. Their relative values reproduce the
corresponding di�erences of relative energies in Table 1
to within 0.3 kcal/mol. This con®rms that these di�er-
ences are caused almost entirely by the three-center
orthogonalization corrections (any deviations from ad-
ditivity being due to very minor changes in the density
matrix).

For a more detailed analysis, Table 3 contains the
di�erent matrix elements kHlk and energetic contribu-
tions. The orthogonalization e�ects on the nonbonded
interaction AAB are considered ®rst (cf. case 2 in Fig. 2,
rows 1±8 in Table 3). Since the distance between the
``perturbing atom'' C and atoms A and B is constant at
1.1 AÊ , the overall correction due to the three-center term
VAB;C is independent of the angle. The energy contribu-
tion EORT due to this correction is negative (OM2
ÿ11:6 kcal/mol, OM2* ÿ18:5 kcal/mol) because of the
negative bond order and the positive pseudopotential.
Note that the matrix element kHlk (unlike blk or Hlk)
can be positive, as, for example, in OM2* for bond
angles of 150 and 180�.

Angular-dependent contributions to electronic strain
appear in the orthogonalization corrections to the in-

Table 1. Relative energies (kcal/mol) of Hÿ3 at di�erent bond
angles

180� 150� 120� 90�

RHF/6-31G** 0.0 6.0 25.7 66.6
MNDO 0.0 2.5 11.6 33.6
OM2** 0.0 3.1 14.0 36.2
OM2 0.0 4.3 19.2 50.7
OM2* 0.0 4.9 22.0 58.5

Table 2. Absolute and relative orthogonalization energies, EORT,
(kcal/mol) of Hÿ3 at di�erent bond angles

EORT Erel
ORT

180� 180� 150� 120� 90�

OM2** 0.0 0.0 0.0 0.0 0.0
OM2 )4.3 0.0 1.2 5.4 14.8
OM2* )7.2 0.0 1.8 8.3 22.7

Table 3. Matrix elements in Hÿ3 at di�erent bond angles (notation as in Fig. 2, bonds AAC and BAC are equivalent due to symmetry, and
values are reported only for AAC)

Interaction Parameters Matrix element 180� 150� 120� 90�

AAB OM2 kHAB (eV) )0.100 )0.203 )0.560 )1.261
bAB (eV) )0.710 )0.813 )1.170 )1.871
VAB;C (eV) 0.610 0.610 0.610 0.610
2PAB � VAB;C (kcal/mol) )11.6 )11.6 )11.6 )11.6

OM2* kHAB (eV) 0.225 0.121 )0.146 )0.936
bAB (eV) )0.710 )0.813 )1.170 )1.871
VAB;C (eV) 0.935 0.935 0.935 0.935
2PAB � VAB;C (kcal/mol) )18.5 )18.5 )18.5 )18.5

AAC OM2 kHAC (eV) )2.672 )2.654 )2.588 )2.442
bAC (eV) )2.786 )2.786 )2.786 )2.786
VAC;B (eV) 0.114 0.132 0.198 0.344
4PAC � VAC;B (kcal/mol) 7.3 8.5 12.7 22.1

OM2* kHAC (eV) )2.611 )2.583 )2.483 )2.260
bAC (eV) )2.786 )2.786 )2.786 )2.786
VAC;B (eV) 0.175 0.203 0.303 0.526
4PAC � VAC;B (kcal/mol) 11.3 13.1 19.6 34.0
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teractions in the bonds AAC and BAC (cf. case 1 in
Fig. 2; the bonds AAC and BAC are equivalent due to
symmetry; therefore values in Table 3 are reported only
for AAC in rows 9A16). Now the resonance integrals
remain constant at ÿ2:786 eV, due to the ®xed bond
lengths AAC and BAC. However, for either interaction,
the presence of the third atom induces a repulsive cor-
rection to the resonance integral; the correction increases
upon lowering the angle from 180 to 90� (OM2 from
0.114 to 0.334 eV, OM2* from 0.175 to 0.526 eV).
Multiplying with the corresponding (positive) density
matrix elements yields repulsive orthogonalization cor-
rections. Note that the prefactor in these products is not
2 (symmetric matrices) but 4, because there are two
equivalent bonds: AAC and BAC. The overall energy
contribution due to these angular-dependent orthogo-
nalization corrections to both bonds increase signi®-
cantly between 180 and 90� (OM2 from 7.3 to 22.1 kcal/
mol, OM2* from 11.3 to 34.0 kcal/mol). They are re-
sponsible for the correct description of electronic strain
in the bent and therefore antiaromatic geometries of the
Hÿ3 ion. They are absent in MNDO and OM2**, which
therefore underestimate the antiaromatic destabilization
in the bent structures.

3.3.2 H4: rotational barriers

As a second example we discuss H4, which has been
suggested as a model system to understand the origin of
rotational barriers [57, 58]. Two conformations are
relevant where the dihedral angle H1AH2 � � �H3AH4 is
either 180� (trans, C2h) or 0� (cis, C2v). The HAH and
H � � �H distances are ®xed at 0.8 and 1.0 AÊ , respectively,
and the two HHH angles at 109.5�. The ab initio RHF/
6-31G** reference calculation predicts the cis isomer to
be 32.7 kcal/mol higher in energy (Table 4). The estab-
lished semiempirical methods ®nd di�erences between
12.9 (PM3) and 15.1 (AM1) kcal/mol, i.e. only about
half of the reference value, which invites the assumption
that the other half is due to closed-shell repulsions. This
is supported by the OM2 results (Table 4): the computed
energy di�erences increase from 14.1 kcal/mol in
OM2** (no three-center orthogonalization corrections)
to 33.5 kcal/mol in OM2* (full inclusion of the correc-
tions), the latter value being very close to the reference
value. Here again, the corrections are approximately
additive.

A detailed analysis [32] yields analogous conclusions
as in the ®rst example, and is therefore only summarized
here (Table 5). The three-center pseudopotential terms
do not discriminate between the two conformations with
regard to the interactions H1AH4 and H2AH3 because

of the ®xed bond lengths and angles. Conformation-
dependent di�erences are found for the orthogonaliza-
tion corrections to the interactions H1AH2 and
H1AH3. Because of a very small corresponding density
matrix element, the total energy is not changed much by
the latter. The correction for the former is due to the
pseudopotentials arising from atoms H3 and H4: V12;3 is
independent of the conformation because of the ®xed
bond distances and angles, whereas V12;4 is the decisive
and dihedral-dependent pseudopotential, which causes
an additional destabilization of the cis isomer by
DEORT � 14:3 kcal/mol.

The numerical results from both examples indicate
that the absolute orthogonalization corrections to ®rst-
neighbor interactions (case 1) are larger than those to
second-neighbor interactions (case 2). In addition, the
latter appear to be rather invariant with respect to
structural or conformational changes. By contrast, the
corrections to ®rst-neighbor interactions are quite sen-
sitive to small changes in the molecular environment,
such as variations in bond angles (e.g. Hÿ3 ) or dihedral
angles (e.g. H4).

4 Orthogonalization corrections
for core-valence interactions

4.1 Derivation

Core electrons are not treated explicitly in semiempirical
or ab initio pseudopotential calculations. In these
approaches, it is commonly assumed that each core
electron reduces the e�ective nuclear charge by 1, to
account for the overall screening of the nuclear charge.
However, there are additional e�ects that need to be
considered [28, 29]:

1. The orthogonality between core and valence orbitals
required by the Pauli principle.

2. The polarization of the core electrons by the valence
electrons.

3. The Coulomb and exchange interactions between core
and valence electrons, as given by the HF potential.

According to pseudopotential theory, these e�ects can
be simulated by one-electron integrals, commonly re-
ferred to as ECPs. The analysis of these interactions at
the ab initio level has shown that the orthogonalization
e�ects dominate by far the net Coulomb, exchange, and

Table 4. Relative energies and orthogonalization energies (kcal/
mol) of trans H4 and cis H4

DE Erel
ORT

RHF/6-31G** 32.7
MNDO 14.9
OM2** 14.1 0.0
OM2 26.5 12.8
OM2* 33.5 20.3

Table 5. OM2 matrix elements in trans H4 and cis H4

Interaction Matrix element trans H4 cis H4 DEORT

H1AH2 kH12 (eV) )2.603 )2.461
b12 (eV) )3.109 )3.109
V12;3 � V12;4 (eV) 0.506 0.648
4P12 �

P
C V12;C

(kcal/mol)
44.7 59.0 14.3

H1AH3 kH13 (eV) )0.966 )0.655
b13 (eV) )2.046 )2.046
V13;2 � V13;4 (eV) 1.080 1.391
4P13 �

P
C V13;C

(kcal/mol)
1.7 0.2 )1.5
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polarization e�ects [28, 29]. For semiempirical ap-
proaches, it would therefore seem justi®ed to include
only the dominant terms due to core±valence orthogo-
nalization, which provide an e�ective repulsive potential
acting on the valence electrons.

For deriving the corresponding corrections, the
symmetric LoÈ wdin orthogonalization is not appropriate
because the core functions are not part of the actual
basis. We therefore use the Schmidt procedure to
orthogonalize the valence functions, l, with respect
to the (only hypothetically present) core functions, a.
This yields modi®ed AOs, ~l,

~l � lÿ
X

a

Slaa ; �51�

whose overlap with the core functions vanishes,

h~ljai � 0 for all a : �52�
The complete Fock matrix is taken into account during
core±valence orthogonalization [59]. To develop a
pseudopotential for the transformation Flm ! ~Flm, we
follow the method of Manne [60] and expand ~Flm by
using Eq. (51),

~Flm � h~ljF j~mi
� hlÿ

X
a

SlaajF jmÿ
X

b

Smbbi

� Flm ÿ
X

a

SlaFam ÿ
X

b

FlbSbm �
X
a;b

SlaSbmFab

� Flm ÿ
X

a

Sla�Fam ÿ SamFaa� � �Fla ÿ SlaFaa�Sam
� �

ÿ
X

a

SlaSamFaa �
X
a 6�b

SlaSbmFab ; �53�

where we have rearranged terms in the last step to
introduce a quantity

Gla � Fla ÿ SlaFaa ; �54�
which formally resembles the Mulliken function (Eq. 18)
and approximates the Fock matrix element between a
Schmidt orthogonalized valence and a core orbital,

h~ljF jai � hlÿ
X

b

SlbbjF jai

� Fla ÿ SlaFaa ÿ
X
b6�a

SlbFab : �55�

Neglecting core±core overlap as in ab initio ECP theory
[28, 29] yields

Fab � 0 �56�
h~ljF jai ' Gla : �57�
Introducing Eqs. (54) and (56) into Eq. (53) leads to

~Flm � Flm �
X
B

Vlm;B�ECP� �58�

Vlm;B�ECP� � ÿ
XB

a

�SlaGam � GlaSam�

ÿ
XB

a

SlaSamFaa ; �59�

where the orthogonalization correction is expressed as
the sum of atomic pseudopotentials Vlm;B�ECP�, arising
from the core orbitals at a given center B. In the case of
®rst-row elements the core contains only the 1s orbital,
and Eq. (59) reduces to

Vlm;B�ECP� � ÿ�SlaGam � GlaSam� ÿ SlaSamFaa : �60�
To our knowledge, this pseudopotential has never been
used before in practical calculations. Zerner [59] has
derived a similar potential, which can be obtained from
Eq. (60) by assuming

GZerner
la � 0 �61�

V Zerner
lm;B �ECP� � ÿ SlaSamFaa : �62�

This ECP has been incorporated into two semiempirical
methods [25, 31].

4.2 Implementation

In line with the standard semiempirical assumptions for
one-electron integrals, we only consider one- and two-
center terms in Eq. (58). The one-center contributions (l
and m at center A, and B = A) need not be computed
explicitly since they are part of the one-center energies
and thus are implicitly adjusted during the parameter-
ization. We shall therefore focus on the two-center
terms, Vlm;B�ECP� (l and m at center A, and B di�erent
from A). Their direct evaluation via Eq. (60) would in
principle require an a priori all-electron SCF calculation
to yield the Fock matrix for the quantities Faa and Gla.
The latter depends on the nature of atoms A and B and
on their distance. According to Eq. (54) it contains a
core±valence overlap integral, Sla, which is independent
of the remainder of the molecule, and the quantities Faa
and Fla.

We have carried out a number of ab initio SCF cal-
culations with a minimal basis set (STO-3G) to study the
behavior of all these matrix elements in di�erent mole-
cules and for di�erent geometries [32]. We draw the
following conclusions from these calculations:

1. Faa is generally only weakly sensitive to both molec-
ular environment and geometry and can therefore
be treated as an adjustable atomic parameter, as
suggested previously [59].

2. Gla is surprisingly well transferable between di�erent
molecular environments.

3. Gla is not negligible; the corresponding ®rst term in
the pseudopotential, Eq. (60), is normally smaller
than the second one, but may become of similar
magnitude or even larger in certain cases.

Plots of Gla as a function of the distance A±B [32]
indicate that Gla indeed resembles a Mulliken function
or a resonance integral in OAO basis, with regard to
its distance dependence. We have therefore decided to
adopt the empirical expression for the resonance inte-
grals, Eq. (27), analogously also for this term,

Gla � 1
2�bA

l � bB
a �

���������
RAB

p
exp �ÿ�aAl � aBa �R2

AB� : �63�
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This introduces two atomic parameters for each core
orbital, for example, b1s und a1s for a 1s core orbital. In
addition, Faa is needed in Eq. (60), as well as the core
orbital exponent (to calculate the core±valence overlap
integrals). Hence, the present implementation of the
proposed semiempirical ECP requires four adjustable
parameters for each ®rst-row element.

Using the optimized OM2 parameters [32], we have
plotted the semiempirical ECPs, Eq. (60), as well as the
two contributing terms in Eq. (60), and compared them
against the corresponding ab initio ECPs, which have
been evaluated analytically in the same basis [61] and
scaled subsequently according to Klopman±Ohno to be
consistent with the treatment of the other two-center
terms in OM2. Inspection of the corresponding ®gures
indicates similar qualitative behavior of the semiempir-
ical and the ab initio ECPs [32]. For the CAC pair, the
ECPs are negligibly small beyond a distance of 2 AÊ

so that the two-center ECP corrections are important
only for chemically bonded atoms; the ECPs are steeply
rising repulsive functions around the equilibrium dis-
tance and become very large for short (chemically
irrelevant) distances below 1 AÊ . Quantitative agreement
between the semiempirical and the ab initio ECPs can-
not be expected (due to the parameterization of the
former), but it is found that both ECPs are usually of
comparable magnitude (not only for the various AO
combinations of CAC, but also for OAO). Concerning
the separation of the semiempirical ECPs into the two
contributing terms, Eq. (60), the ®rst term (involving
Gla) is smaller than the second one for CAC (amounting
typically to only 20%), particularly for small distances;
it becomes relatively more important for larger dis-
tances, and also for OAO [32].

5 Summary

In this paper we have derived and discussed two new
one-electron orthogonalization corrections for semiem-
pirical methods. The ®rst one accounts for valence-shell
orthogonalization e�ects on the resonance integrals,
while the second one includes the dominant repulsive
core±valence interactions through an ECP.

The neglect of valence-shell orthogonalization in es-
tablished semiempirical methods, such as MNDO, AM1,
and PM3, is responsible for some of their most severe
de®ciencies, for example, with regard to conformational
properties or the underestimation of closed-shell repul-
sions. The proposed orthogonalization corrections for
the resonance integrals consist of three-center terms
which incorporate stereodiscriminating properties into
the two-center matrix elements of the core Hamiltonian.
By accounting for the molecular environment, these
corrections allow the conformational preferences to be
better described; this has been analyzed in some detail
for small model systems.

Both corrections have been implemented and pa-
rameterized in the framework of a new general-purpose
semiempirical method called OM2 [32]. A full de-
scription of OM2 with a comprehensive evaluation of
the results will be published elsewhere; a brief statistical

assessment for heats of formation is already available
[10].
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